Evaluation of the use of spectral and textural information by an evolutionary algorithm for multi-spectral imagery classification
نویسندگان
چکیده
Considerably research has been conducted on automated and semi-automated techniques that incorporate image textural information into the decision process as an alternative to improve the information extraction from images while reducing time and cost. The challenge is the selection of the appropriate texture operators and the parameters to address a specific problem given the large set of available texture operators. In this study we evaluate the optimization characteristic of an evolutionary framework to evolve solutions combining spectral and textural information in non-linear mathematical equations to improve multi-spectral image classification. Twelve convolution-type texture operators were selected and divided into three groups. The application of these texture operators to a multi-spectral satellite image resulted into three new images (one for each of the texture operator groups considered). These images were used to evaluate the classification of features with similar spectral characteristics but with distinct textural pattern. Classification of these images using a standard image classification algorithm with and without the aid of the evolutionary framework have shown that the process aided by the evolutionary framework yield higher accuracy values in two out of three cases. The optimization characteristic of the evolutionary framework indicates its potential use as a data mining engine to reduce image dimensionality as the system improved accuracy values with reduced number of channels. In addition, the evolutionary framework reduces the time needed to develop custom solutions incorporating textural information, especially when the relation between the features being investigated and the image textural information is not fully understood. 2009 Elsevier Ltd. All rights reserved.
منابع مشابه
3D Classification of Urban Features Based on Integration of Structural and Spectral Information from UAV Imagery
Three-dimensional classification of urban features is one of the important tools for urban management and the basis of many analyzes in photogrammetry and remote sensing. Therefore, it is applied in many applications such as planning, urban management and disaster management. In this study, dense point clouds extracted from dense image matching is applied for classification in urban areas. Appl...
متن کاملتعیین ماشینهای بردار پشتیبان بهینه در طبقهبندی تصاویر فرا طیفی بر مبنای الگوریتم ژنتیک
Hyper spectral remote sensing imagery, due to its rich source of spectral information provides an efficient tool for ground classifications in complex geographical areas with similar classes. Referring to robustness of Support Vector Machines (SVMs) in high dimensional space, they are efficient tool for classification of hyper spectral imagery. However, there are two optimization issues which s...
متن کاملSpectral-spatial classification of hyperspectral images by combining hierarchical and marker-based Minimum Spanning Forest algorithms
Many researches have demonstrated that the spatial information can play an important role in the classification of hyperspectral imagery. This study proposes a modified spectral–spatial classification approach for improving the spectral–spatial classification of hyperspectral images. In the proposed method ten spatial/texture features, using mean, standard deviation, contrast, homogeneity, corr...
متن کاملImprovement of the Classification of Hyperspectral images by Applying a Novel Method for Estimating Reference Reflectance Spectra
Hyperspectral image containing high spectral information has a large number of narrow spectral bands over a continuous spectral range. This allows the identification and recognition of materials and objects based on the comparison of the spectral reflectance of each of them in different wavelengths. Hence, hyperspectral image in the generation of land cover maps can be very efficient. In the hy...
متن کاملObject Level Strategy for Spectral Quality Assessment of High Resolution Pan-sharpen Images
Panchromatic and multi-spectral images produced by the remote sensing satellites are fused together to provide a multi-spectral image with a high spatial resolution at the same time. The spectral quality of the fused images is very important because the quality of a large number of remote sensing products depends on it. Due to the importance of the spectral quality of the fused images, its eval...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Computers, Environment and Urban Systems
دوره 33 شماره
صفحات -
تاریخ انتشار 2009